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The four-state model proposed in earlier papers for the description of thermal shrinkage is developed to 
describe the induction time that occurs when an oriented polymer sample is kept under constant temperature 
conditions. It is shown that the effect of induction time can be explained on the basis of this model as the result 
of interactions between neighbouring regions of shrinking polymer units. 
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I N T R O D U C T I O N  

Thermal shrinkage of highly oriented polymers is 
dependent on time and temperature. Time dependence 
can be observed through change of length of an 
unconstrained sample at constant temperature or 
appearance of stresses at the ends of a sample kept at 
constant length ~ -4. 

The measurements of temperature and time dependent 
shrinkage forces generated by the sample of oriented 
polymer kept at constant length have been described in 
our earlier papers 5'6. 

The measurement apparatus was made from two mat- 
erials (brass and steel) of different thermal expansivities 
in such a way that the dimension between the jaws was 
constant (25 mm) in the whole range of temperatures 
used 6. The samples were up to 0.3 mm thick so their 
thermal expansions were complete after about 5 s after 
being placed in the oil bath which was stabilized at the 
elevated temperature. In that time the distance between 
the jaws was slightly increased to compensate for the 
compressive stress caused by thermal expansion of the 
sample. 

Further details of the experiments performed and the 
results obtained have been previously describedS; this 
paper gives a further explanation of those results. 

Typical time dependences of shrinkage stresses 
obtained for oriented amorphous polycarbonate 
maintained at constant length are shown in Figure 1. 

An induction time, t o , at which nonzero stress appears, 
is observed in all cases. After the induction period the 
stress increases quickly, and then more slowly at longer 
times. Similar dependences were observed for oriented 
poly(ethylene terephthalate) and were recorded for both 
polymers well below their glass transition temperature. 

The time dependences of shrinkage forces for t > t o have 
been discussed and explained in terms of the four-state 
model s . In the present study the same model was used to 
describe the induction time and the initial stages of the 
stress-time curves. 

M O D E L  

The model has been described in detail 6. Graphical 
representation of a single unit is shown in Figure 2. It 
consists of two springs: $1, connected in parallel with a 
two-site element, and $2, connected in series with another 
two-site element. Molecular interpretation assumes that 
$1 represents the chain elasticity and, when extended (in 
site 2), it represents an oriented configuration of a 
molecular subunit; in site 1 it represents a relaxed chain 
orientation. S 2 represents an elastic .junction of the 
subunit with the matrix and its extension can be relaxed 
by overcoming the potential barrier between sites 3 and 4. 

At constant length the whole element can assume four 
states depending on whether $1 assumes site 1 or 2 and 
whether S 2 assumes site 3 or 4: 

2,3 state A internally stressed state, represents the 
local situation in oriented polymer 

1,3 state B intermediate state, contributes to the 
externally observable stresses of 
shrinkage 

1,4 state C final, internally and externally relaxed 
state 

2,4 s t a t e d  theoretically possible but the least 
probable, state (not considered in this 
paper). 

Sites 1 and 2 are separated by Helmholtz free-energy 
barrier of height AF 1, sites 3 and 4 by a barrier of height 
AF 2. The temperature and time dependences of shrinkage 
stresses were explained 6 by solving the kinetic equations 
of transitions through the barriers in model units 
connected in parallel or in series. A single model unit 
represents a certain volume in oriented, amorphous 
polymer and a simple parallel or series connection 
assumes a lack of interactions between the neighbouring 
regions inside the polymer. In reality, when a 
macromolecule (or part of it) tends to reduce its end-to- 
end distance owing to thermal vibrations it influences 
surrounding macromolecules. Such interactions make 
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Figure 1 Shrinkage stress vs. time at various temperatures for oriented 
polycarbonate 
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Figure 2 Representation of the four-state model 

shrinkage of the macromolecule difficult and the 
shrinking part tends to compress its nearest surroundings. 
In the vicinity of the shrinking macromolecule 
compressive stresses appear that make shrinkage of the 
neighbouring regions easier. In the model description of 
the shrinkage phenomenon it is necessary to take into 
account this influence, which can be achieved in the 
simplest way by parallel connection of model units in 
groups. 

THE GROUP 

A single group of N elements connected in parallel is 
shown in Figure 3. As the whole assembly has to be kept 
under constant length conditions it is necessary to add an 
elastic element, S,, to transduce the action of the group. S3 
is part of S, and it has the same molecular 
interpretation; it represents a resultant elastic junction 
of N model elements with the matrix so that its elastic 
constant is N times greater than the constant of S,. 

In the initial state all elements occupy state A. Owing to 
thermal activation and internal stress on S, the elements 
in state A are able to overcome the energy barrier and pass 
to state B. The stiff junction J (J representing the 
interaction between neighbouring shrinking regions in 
oriented polymer) enables the units to interact with each 
other; shrunk elements (in state B) compress the 
elements in state A and the local stresses on these elements 
make their shrinkage more probable. The number of 
elements in the group cannot be large because such a stiff 
junction assumes that interactions between shrinking 
regions of oriented polymer propagate immediately, 
which generally is not true but over sufficiently small 
distances this assumption is reasonable. The external 
effect of shrinkage of such a group is small at the 
beginning owing to the great resistance of compressed 
elements, but then, with the increase of shrunk units, the 
shrinkage of the group will be spontaneous, leading in a 
short time of all the units passing to state B. 

Such a group represents a certain volume of oriented 
polymer around the shrinking polymer unit where 
interactions between this unit and its surroundings 
propagate, while the whole sample, as a set of such volume 
elements, can be represented by an assembly of connected 
groups. There are many possible connections but, no 
matter which one is being considered, it is necessary to 
describe the shrinkage stress exerted by one single group 
at first, then knowing the shrinkage behaviour of the group 
it is much easier to calculate the stress exerted by the 
assembly of groups which represents the sample. 

Let us consider the group of N elements, where NA, NB, 
Nc occupy states A, B, C respectively: state D, being the 
least probable, is not considered. As an illustration of the 
properties of the model, a numerical solution of the most 
simplified case-one way transition of the A+B+C 
type-is presented here. The kinetics of this reaction are 
described by a set of differential equations6: 

dn, 
2= 

dt 
- ‘?&A, 

dn,cn K 

dt A AB -nBbc (1) 

d”=n K 
dt BBC 

where n, denotes the population of state I (nr = N,/N) and 

nA+nB+&=l (2) 

The constants KA, and KB, are temperature-dependent 
transition rates related to the heights of potential barriers 
modified by local stresses on the model elements and can 
be defined as follows7: 

AF, - bB V, 

kT 

----- 

-m--- 

(3) 

J J 

Figure 3 Representation of a single group of model elements 
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where A is a constant and the exponents define the heights 
of the potential barriers dependent on the Helmholtz free 
energy AF 1 and A F  z modified by mechanical energy 
components determined by the local stresses o-A and aB, on 
elements in state A and B respectively, and the internal 
stress, o.0,, related to the extension of spring S~ from site 1 
to 2. 

V t and V 2 are the activation volumes of elastic elements, 
St and $2. These simplified relations are valid on the 
assumption that the Helmholtz free energy contour is 
described by the nonzero strain resistance in such a way 
that elements S, and S 2 can assume only sites 1 or 2 and 3 
or 4 located precisely at the bot tom of the AF contour. It 
should be noted that the energy 

AG = A F  1 -O'ol V 1 (4) 

denotes the height of the Gibbs free energy barrier for 
element $1 in site 2. 

The local stresses, O'A and o-B, and the external stress, o-s, 
exerted by a group depend on the population of states and 
are given by the equations (see Appendix): 

o-A = - 0.5 o.on~ (5a) 

1.0 
d 
.o 
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Figure 4 
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4, AF 2/k = oe ( A-- .  B transition) 
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Time dependence of population n B of state B in one group. 

AFz/k = 13 500K; 

For  a model description of the generation of shrinkage 
stresses the groups have to be connected to each other, 
which in the simplest case can be realized by a parallel or 
series connection. The problem of solving a series 
connection of groups is very complex and analytically 
impossible because groups do not act independently. 
Parallel connection kept under constant length as an 
assembly of independently acting groups is easier to solve 
and provides a good explanation of the initial stages of 
shrinkage. For  this reason only this connection is 
described below. 

o-a = o.o - 0.5 o.on a (5b) 

% = 0.5 o.onB (5c) 

where o. 0 is the internal stress related to the extension of 
spring $2 from site 3 to 4. 

Equations (1), (3) and (5) permit calculation of the 
population of state B and the characteristic o.g(t) of one 
single group. As an illustration of the properties of the 
group these equations have been solved numerically 
assuming the following values of parameters: 

A G / k =  12000 K 

V l = 3000 A 3 

V 2 = 5 0 0  A 3 

o-o = 50 MPa  

A = 1 0  '4 

(6) 

T = 3 0 0 K  

nA(t = O) = 1 

The time dependence of the population of state B is shown 
in Figure 4 for transitions of type A---~B---*C and A---,B 
(without relaxation). According to equation (5c) the stress 
o.g exerted by a group is proportional to nB SO that curve 
o.g(t) is similar to curve n~(t)--the effect is small at the 
beginning (curves 2, 3 and 4) and then the stress increases 
abruptly to its maximum value, slowly falling for greater 
times as a result of relaxation. 

If the relaxation is greater, i.e. when the energy barrier 
between sites 3 and 4 is relatively small, the group exerts 
no significant stress (curve 1). As can be seen in Fioure 4, 
curves 2, 3 and 4 are very close to each other for the initial 
stages so that, if the relaxation is small enough to make the 
external stress possible, ~t becomes significant for greater 
times. For the description of the initial stages of shrinkage 
stress the relaxation transitions of type B---,C can be 
neglected. 

PARALLEL C O N N E C T I O N  OF G R O U P S  

It is further assumed that in the initial state such an 
assembly consists of elements in state A and the length of 
the system is kept constant. The group is considered as 
active if at least one element of this group has been 
activated (has left state A). Since all the groups act 
independently of one another the change of the number of 
active groups is given by the equation: 

d L / d t  = (M - L )vP  (7) 

where M is the total number of groups, L is the number of 
active groups, v is the frequency of vibrations and P is the 
probability of one group's activation. If P0 denotes the 
probability of activation of the first element in the group 
and Po < 1, then for the group consisting of N elements 

P~ N P  o (8) 

According to equations (7) and (8) the number of active 
groups in time is described by the following equation: 

L = M[  1 - exp( - N K  or)] (9) 

where K o = vP o is the rate of activation of the first element 
in the group. Each group acts independently with its own 
characteristic as(t) from the moment  when at least one of 
its elements has been activated. All the groups are identical 
and the function as(t) is the same for each g roup- - the  
external stress, o., exerted by a system of M groups is given 
by a mean value of  stresses exerted by all groups in a given 
time, t: 

M 

0 

([o) 

where r is the time when the number of active groups is 
increased by dL. By differentiating equation (9) and 
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substituting in equation (10) we obtain: 

oo 

 (t)=NKo f a,(t-z)exp(-NKoz)dz 
0 

(11) 

Assuming that Crg(t) is constant for t ~< 0: 

  °fort.<0 
ag(t) = [ag(t) for t > 0 

and 

t 

a(t) = NKo f ag(t- z)exp( - NKor)dz + ag° exp( - NKot ) 

0 

Finally converting the convolution 

t 

0 

(12) 
Equation (12) enables the calculation of the external stress 
exerted by a parallel connection of groups if the 
characteristic ag(t) of a single group is known. 

For  the group of elements acting according to 
transitions A--.B--*C or A--*B without any initial stresses, 
~o = 0 and 

Ko = KAB(nB = 0) = Aexp(-- AG/kT) (13) 

Functions a(t)calculated according to equations (12) and 
(13) (for N =  10) on the basis of characteristics given in 
Figure 4 are shown in Figure 5. The growth of the stress is 
initially small then increases rapidly and slows down for 
greater times. The induction period is clearly seen and by 
comparison of Figures 4 and 5 it can be treated as the time 
needed for one group to reach its maximum activity. 

Previously s the initial stages of shrinkage were 
described by solving the parallel connection of single 
elements. The solution had the form of a simple 
exponential function that was in good agreement with 
experiment but did not predict the effect of induction time. 
The same exponential function can be derived from 
equation (12) for ag(t) given by the step function so that the 
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Figure 5 Time dependence of stress exerted by a parallel connection of 
group acting according to the characteristics shown in Figure 4 
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Figure 6 Time dependence of shrinkage stress at various temperatures 
predicted on the basis of parallel connection of groups 

curve of shrinkage stress for t ~> t o predicted on the basis of 
parallel connection of groups is nearly identical to that 
predicted on the basis of parallel connection of the 
elements because the curves nB(t) shown in Figure 4 are 
similar to the step function. 

T E M P E R A T U R E  D E P E N D E N C E  OF 
I N D U C T I O N  T I M E  

From comparison of the curves in Figure 5 it is seen that 
the relaxation transitions B---~C are significant for times 
much greater than to so that for a good description of the 
initial stages of shrinkage only transitions of type A---~B 
need be considered. The time dependences of the 
shrinkage stresses predicted on the basis of parallel 
connection of groups of the models with single transition 
A---~B for various temperatures are shown in Figure 6. 

The values of the quantities appearing in the solved 
equations are the same as previously. It is seen that the 
induction time is very sensitive to temperature and the 
calculated curves are in good qualitative agreement with 
the experimental curves shown in Figure 1. For  A---~B 
transition the kinetic equations (1) for one group reduce to 
one equation: 

dna/dt = (1 - nB)A exp[ -- ( A G -  0.5tron B V t )/kT] (14) 

It was previously noted that t o is a time when a single 
group reaches its maximum activity, but the increment of 
na is very rapid in this region so that for mathematical 
calculations it is possible to assume that the value of nB for 
t = to is between 0.6 and 1. Assuming that na(t = to) = 0.95 
equation (14) leads to the value of t o given in the form: 

I {AG'~ ,o= expt ] (15) 

where 

0 . 9 5  

f exp(_troVlnffkT ) 
I =  1 --nB 

0 

dnB (16) 

For  physically reasonable values of A, a o and V 1 the 
quantity In(I/A) is a weak function of temperature and 
changes by less than 0.4~ of its value in the temperature 
interval 290-350 K, while t o changes by several orders of 
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magnitude in the same temperature interval so that 
according to equation (15) a plot of Into vs. 1/T should be 
a straight line with a slope AG/k. As an example, such a 
plot of numerically calculated values to for data given by 
equation (6) is shown in Fioure 7. The slope of a fitted line 
is equal to 11 940 K while the strict value of AG/k is 
12 000 K. 

RESULTS AND DISCUSSION 

The induction times were measured for the polycarbonate 
(PC) Macrolon 2408 and commercial films of 
polyethylene terephthalate (PET). Samples were oriented 
by cold drawing (at room temperature) with a drawing 
rate of 1 cm m i n -  a for PC and 0.5 cm m i n -  1 for PET to 
the natural draw ratios of about  2 for PC and 4 for PET. 

The induction times measured for both polymers are 
shown in Table 1. The values of induction times obtained 
at higher temperatures are measured with considerable 
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Figure 7 Plot of lnt o vs. 1/T for values calculated with parallel 
connection of groups 
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Figure 8 Plots oflnt o vs. 1/T for polycarbonate (PC) and poly(ethylene 
terephthalate) (PET) samples 

Table 1 Induction time of appearance of shrinkage forces at constant 
temperature for polycarbonate (PC) and polyethylene terephthalate 
(PET) 

Induction time (s) 
Temperature 
(°C) PC PET 

45 5600 144 
50 2700 90 
55 1300 22 
60 405 
65 165 

error as a result of delayed heat transfer from the 
immersion oil to the sample at the beginning of the 
experiment 5. The plot of lnt o vs. 1/T for the values taken 
from Table 1 is shown in Figure 8 and the activation 
energies obtained from the slopes of the lines are: 

AG = 42 kcal m o l -  ~ for PC 

AG = 37 kcal m o l -  1 for PET 

The activation energy values obtained are in good 
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Table 2 Activation energy for thermal shrinkage of polycarbonate 
(PC) and poly(ethylene terephthalate) (PET) calculated by various 
methods 

The local stresses 
equations: 

on those elements are given by 

Activation energy (kcal mol-1) aA = F A/N ASo =fAll/So 

Method Ref. PC PET 

Initial stages of 
shrinkage force 5 46 30 
Induction time this paper 42 37 

a s = Fa/NsS o =f(A/1 + a)/S o (A1) 

O" C :O"  A 

where S O is the cross-section of one element. 
The external force F exerted by a group is given by the 

sum of local forces 

agreement with those calculated from the curves 
shrinkage stress vs. time for times t i> to (ref. 5). The two 
sets of values are compared in Table 2. 

F = F A q- F s + Fc = NfAll + Nafa 

For spring Sa of elastic constant)Ca 

(A2) 

CONCLUSIONS 

The good agreement between the observed temperature 
dependences of induction times and those predicted on 
the basis of a connection of groups of four-state models, as 
well as the similarity of values of activation energies 
obtained from this dependence to those obtained from the 
initial stages of shrinkage stress curves, seems to lend 
further support for the model. 

The effect of induction time is explained on the basis of 
this model as a result of interactions between 
neighbouring shrinking regions in oriented amorphous 
polymers. The time dependences of shrinkage stress 
predicted by the parallel connection of groups of the 
model elements for times greater than the induction 
period are very close to those predicted on the basis of 
parallel connection of the model elements. 
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APPENDIX 

Derivation of equation (5) 
Let us consider a group of N elements of which NA, NB, 

Nc occupy states A, B, C respectively. As a result of 
internal stresses the group changes its length by AI 1 so the 
spring $3 changes its length by A/3 (see Figure 3). 

AI 1 + AI a = 0 

The local forces exerted by elements occupying various 
states are equal to 

F A = N A f A I I  

F s = N s f ( A l  I + a) 

Fc =NcfAlx 

where f i s  an elastic constant of spring $2, and a is the 
distance between sites 3 and 4 or 1 and 2. 

F =faA/a = -faAlx (A3) 

From equations (A2) and (A3) 

U ~  
All = (A4) 

Sf+fa  

Internal stress a o related to the extension of spring S 2 
from site 3 to 4 is equal to 

Go =fa/So 

From equations (A1) and (A4) it is easy to obtain aA and 
% in the following form: 

f N s  
trA-- Nf+f3ao 

fNB 
oB = ao - J31v'-+~° 

(A5) 

The external stress tr exerted by the group is equal to 

F f3Ns 
- a o ( A 6 )  t r -NSo  Nf+f3 

The elastic action of spring S a is a resultant action of N 
springs S 2 

A = N f  

and equations (A5) and (A6) are identical to equation (5). 
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